Skip to content
pyMOR v2022.1.0+10.g1e4928d26 Manual logo
Documentation pymor.algorithms.line_search
Type to start searching
    • pyMOR v2022.1.0+10.g1e4928d26 Manual
    • API Reference
    • pymor
    • pymor.algorithms
    • Getting started
    • Technical Overview
    • Environment Variables
    • pyMOR Tutorials
    • Release Notes
    • Bibliography
    • Developer Documentation
    • API Reference
    • pymor
      • Subpackages
        • algorithms
          • Submodules
            • adaptivegreedy
            • basic
            • bernoulli
            • dmd
            • ei
            • eigs
            • error
            • genericsolvers
            • gram_schmidt
            • greedy
            • hapod
            • image
            • krylov
            • lincomb
            • line_search
            • lradi
            • lrradi
            • lyapunov
            • newton
            • pod
            • preassemble
            • projection
            • rand_la
            • riccati
            • rules
            • samdp
            • simplify
            • svd_va
            • sylvester
            • symplectic
            • timestepping
            • to_matrix
        • analyticalproblems
        • bindings
        • core
        • discretizers
        • models
        • operators
        • parallel
        • parameters
        • reductors
        • scripts
        • tools
        • vectorarrays
      • Submodules
      • Package Contents

    pymor.algorithms.line_search¶

    Module Contents¶

    pymor.algorithms.line_search.armijo(f, starting_point, direction, grad=None, initial_value=None, alpha_init=1.0, tau=0.5, beta=0.0001, maxiter=10)[source]¶

    Armijo line search algorithm.

    This method computes a step size such that the Armijo condition (see [NW06], p. 33) is fulfilled.

    Parameters

    f

    Real-valued function that can be evaluated for its value.

    starting_point

    A VectorArray of length 1 containing the starting point of the line search.

    direction

    Descent direction along which the line search is performed.

    grad

    Gradient of f in the point starting_point.

    initial_value

    Value of f in the point starting_point.

    alpha_init

    Initial step size that is gradually reduced.

    tau

    The fraction by which the step size is reduced in each iteration.

    beta

    Control parameter to adjust the required decrease of the function value of f.

    maxiter

    Use alpha_init as default if the iteration count reaches this value without finding a point fulfilling the Armijo condition.

    Returns

    alpha

    Step size computed according to the Armijo condition.

    Previous pymor.algorithms.lincomb
    Next pymor.algorithms.lradi
    © Copyright pyMOR developers and contributors.
    Last updated on Aug 26, 2022.
    Created using Sphinx 5.1.1. and Material for Sphinx